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Abstract. As a generalization of the Mattis–Gallinar effect (which predicts that the mass of an
exciton depends upon its internal kinetic energy), I derive a formula for the mass tensorM of
the exciton that includes the effect of ‘exciton hopping’ or Heller–Marcus mechanism, which is
particularly important for the mobility of Frenkel-like excitons. IfM−1

ij is the ij th component

of the inverse mass tensorM−1, and if the mass tensors of the electron (me) and hole (mh) are
proportional, withm−1

e = αm−1
h , then

M−1
ij = −

∑
R

RiRj

(
βKR + H(R)

〈H 〉
HF

)
whereKR is an internal excitonic kinetic energy associated with the crystal lattice vectorR,
β ≡ α/(1+α)2 is the reduced mass tensor of the electron and hole divided by the total Wannier
mass tensor, andH(R) is a matrix element of the exciton-hopping energy operatorH . If the
exciton becomes Frenkel like or localized in the sense that the expectation value〈H 〉 → HF ,
and thatKR → 0, then the inverse mass tensor in the Frenkel limit becomes

(M−1
ij )F = −

∑
R

RiRjH(R) 6= 0.

Thus, the (otherwise divergent) mass tensor of the Frenkel exciton remains finite as a
consequence of the Heller–Marcus mechanism. On the other hand, for Wannier excitons one
has〈H 〉 → 0, and

(−)
∑
R

RiRjKR → (m−1
e + m−1

h )ij

which means thatM = me + mh in the Wannier limit. Finally, some comments are made about
the various (experimental) predictions implicit in the above derived formula for the exciton’s
translational mass.

1. Introduction

The result that the translational mass of an exciton depends† upon the exciton’s internal
quantum state is well established by now [1, 2]. First predicted theoretically in 1984 by
Mattis and Gallinar [1], this effect was then verified experimentally by Schnatterly and co-
workers [3, 4] from transmission electron-energy-loss measurements in, for example, various
substances such as NaF, CuCl and solid krypton. Although the samples studied [3, 4] have
been in the form of cubic crystals, the effect has also recently [5] been theoretically extended
to other crystalline lattices, where it has been shown [5] (for identical electron and hole
masses) to hold in a somewhat similar form. In fact, as pointed out by Mattis [6], the
conceptual reach of the Mattis–Gallinar effect [2, 3] should extend beyond the excitonic
application to other two-particle composites such as the Cooper pair of the BCS theory of
superconductivity or the bound-magnon pair of magnetism, and in general to the two-body
‘problem’ on a lattice.

† Mainly through the exciton’s internal kinetic energy.
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Furthermore, one should add to this that three-body complexes (such as the ‘trion’
formed from a Frenkel exciton plus an electron (or hole)) have also been predicted [7]
to exhibit a dependence of the total effective mass upon the internal energy of the bound
complex. Whether every few-body composite with more than two particles defined on a
lattice also exhibits this dependence, remains, however, an interesting unsettled question [6]
to this day.

In the present work we purport to generalize the Mattis–Gallinar effect (for the two-
body problem) by developing a formula for the mass tensorM of the exciton that takes
account of the ‘exciton hopping’ [8] or Heller–Marcus mechanism, which is particularly
relevant for the mobility of Frenkel-like excitons. The inclusion of the ‘exciton-hopping’
mechanism brings about a very desirable feature, namely that of endowing the Frenkel
exciton with a finite mass [8, 9], yielding in this manner, in our formulation [8] for the
exciton mass, a smooth interpolation between the two extreme limits of the Mott–Wannier
and the Frenkel-type excitons.

The problem of interpolating between the Wannier and Frenkel limits is long-standing
and difficult [4]. Although much original and important work, theoretical [10] as well as
experimental [11], has been done in the detailed study of ‘intermediate’ [4] excitons [12],
yet a sufficiently general (as well as simple) interpolating scheme for the specific property
of the translational mass of the exciton was lacking prior to 1984. Thus, the Mattis–Gallinar
result [1, 8] is important, as also is the need for further generalizations of it.

To this end, we also extend here our previous [5] formulation for non-cubic crystals
to cases in which the mass tensors of the electron (me) and hole (mh), although still
proportional to each other, are, however,not necessarilyidentical as was previously [5]
assumed. In turn, this requires (as will be seen below) somewhat more elaborate and
interesting considerations in the derivation of the formula for the mass tensorM of the
exciton.

2. Formalism and results

We consider the excitonic HamiltonianH as

H = Ee(ke) + Eh(kh) + V(Re − Rh) + H (1)

with the kinetic energy

Ee(ke) =
∑
R

C(R) exp(ike · R) (2)

for the electron of wavevectorke = −i∇e, and the respective kinetic energy

Eh(kh) =
∑
R

V (R) exp(ikh · R) (3)

for the hole whose wavevector iskh = −i∇h. Associated with the lattice vectorR, C(R)

andV (R) represent the ‘hopping’ matrix elements for the electron and hole, respectively.
In equation (1),V(Re −Rh) is the attractive potential energy when the electron and hole are
localized at lattice sitesRe andRh, respectively, with|Re, Rh〉 denoting the corresponding
orthonormal basis states of such localization; finally,H is the ‘exciton hopping’ [13] (or
Heller–Marcus) energy [8].

The non-vanishing matrix elements ofH are taken to be given by [8]

〈R′, R′|H |R, R〉 ≡ H(R − R′) R 6= R′ (4)

i.e. those for whichRe = Rh, with the electron and hole residing together (as a strongly
bound Frenkel exciton) at the same lattice site [8].H(R − R′) in equation (4) is thus the
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matrix element for ‘exciton hopping’ of the exciton as a whole entity [8] betweenR and
R′ (or the initial and final sites of the ‘hop’).

A difference equation for the relative-coordinate wavefunction of the exciton,F(Re −
Rh) ≡ F(r), can be obtained by a rather straightforward procedure which has been
explained at length elsewhere [5, 8], resulting here in∑
R

[
exp

(
i
k

2
· R

)
C(−R) + exp

(
−i

k

2
· R

)
V (R)

]
F(r + R) = (E(k) − Vk(r))F (r)

(5)

where

Vk(r) ≡ V(Re − Rh) + δr,0

∑
R 6=0

H(R) exp(ik · R). (6)

In equation (5), E(k) is the energy eigenvalue of the exciton whose centre-of-mass
wavevector isk. Through equation (6) the effect of the ‘exciton-hopping’ mechanism
is seen to give rise to an effectivek-dependent potentialVk(r) binding the electron and
hole together. One now writes

εk(R) ≡ |εk(R)| exp(iθk(R)) ≡ exp

(
i
k

2
· R

)
C(−R) + exp

(
−i

k

2
· R

)
V (R) (7)

and changes the phase of the wavefunctionF(r), through

F(r) ≡ G(r) exp[−iϕ(k)r · k]

whereϕ(k) is to be suitably adjusted; thus we can rewrite equation (5) as∑
R

|εk(R)| exp[iθk(R)] exp[−iϕ(k)k · R]G(r + R) = (E(k) − Vk(r))G(r) (8)

where

|εk(R)| =
√

V 2(R) + C2(−R) + 2V (R)C(−R) cos(k · R) (9)

and

tan[θk(R)] = C(−R) − V (R)

C(−R) + V (R)
tan

(
k · R

2

)
. (10)

To make further progress, we assume that electron and hole share asimilar band structure,
in the sense thatC(−R) = αV (R) (α > 0) or, equivalently, that the mass tensors of the
electron (me) and the hole (mh) are proportional, with(m−1

e )ij = −∑
R RiRjC(−R) =

α(m−1
h )ij , or Ee(ke) = αEh(−ke) in equations (2) and (3). As a consequence of this

simplifying assumption, the angleθk(R) in equation (10) will depend uponR only through
the combinationk · R, and thus the phase angleϕ(k) can be suitably adjusted so as
to eliminate from the exponentials in equation (8) the lineark-term in the net phase
8(k) ≡ θk(R) − ϕ(k)k · R. With the choiceϕ(k) ≡ 1

2[(α − 1)/(α + 1)], the net phase
8(k) is thus at least of orderk3 (for k → 0) and, as will be seen below, can be left out of
the calculation of the effective mass of the exciton.

One now introduces ‘coupling’ parametersλ(R) and µ [5, 8], such thatV (R) and
C(−R) are renormalized toλ(R)V (R) and toλ(R)C(−R), respectively, while the entire
Heller–Marcus termH in the Hamiltonian is renormalized byµ [8]. This, in turn,
renormalizes|εk(R)| by |λ(R)| andH(R) by µ, while leavingθk(R) unchanged.
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The energy eigenvalueE(k) of the exciton considered (in a purely formal manner) as
a function of the coupling parameters will obey a scaling relationship that follows from
equation (8), namely

E(k; µ, λ(R1), λ(R2), . . .) = E(0; µ̃, λ̃(R1), λ̃(R2), . . .) (11)

provided that the renormalized parametersλ̃(R) and µ̃ are given by

λ̃(R) ≡ λ(R)|εk(R)|
|V (R) + C(−R)| exp[i8(k)] (12)

and by

µ̃ ≡ µh(k)

h(0)
(13)

where

h(k) ≡
∑
R 6=0

H(R) exp(ik · R).

The expansion of equations (12) and (13) in powers ofk (up tok2) yields for equation (11)
that

E(k; µ, {λ(R)}) ' E

(
0; µ − µ

∑
R 6=0

H(R)(k · R)2/2h(0),

{
λ(R) − λ(R)V (R)C(−R)(k · R)2

2(V (R) + C(−R))2

})
(14)

where {λ(R)} denotes the set ofλ(R)-values, and we have assumed [8] thatH(R) =
H(−R). In obtaining equation (14), use has been made of the fact that in the expansion
of equation (12) the net phase8(k) is at least of orderk3, and λ̃(R) is thus real to the
required orderk2. The subsequent Taylor expansion of the right-hand side of equation (14)
then gives to lowest order ink2 that

E(k; µ, {λ(R)}) ' E(0, µ, {λ(R)}) −
(

µ
∑
R 6=0

H(R)(k · R)2/2h(0)

)
∂E

∂µ

−
∑
R

λ(R)V (R)C(−R)(k · R)2

2(V (R) + C(−R))2

∂E

∂λ(R)
. (15)

On the other hand, the components of the effective inverse mass tensorM−1 of the exciton
at k = 0 are defined through

M−1
ij ≡

(
∂2E(k)

∂ki∂kj

)
k=0

. (16)

Setting againλ(R) = µ = 1 in equation (15), and inserting equation (15) into equation (16),
one thus finds that

M−1
ij = −

∑
R

RiRj

(
H(R)

〈H 〉
h(0)

+ α

(1 + α)2
KR

)
. (17)

In equation (17), use has been made of the Hellmann–Feynman theorem, according to which
one has

∂E

∂µ
=

〈
∂H
∂µ

〉
k=0

= 〈H 〉
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and

∂E

∂λ(R)
=

〈
∂H

∂λ(R)

〉
k=0

≡ KR = V (R)〈α exp(−∇e · R) + exp(∇h · R)〉k=0 (18)

the expectation values being calculated with the eigenstates ofH. Equation (18) defines
KR as a kinetic energy [5] associated with the lattice vectorR.

For Wannier excitons, one expects thatKR = (1 + α)V (R) (i.e. 〈exp(−∇e · R)〉 =
〈exp(∇h · R)〉 ' 1) and〈H 〉 → 0 [8]. Thus, equation (17) gives for Wannier excitons that
M−1

ij = [α/(1 + α)](m−1
h )ij or M = me + mh, as expected.

On the other hand, for Frenkel-like excitons localized in the sense thatKR = 0 (if
R 6= 0), one writes from equation (17) that

(M−1
ij )F = −

∑
R

RiRjH(R)
HF

h(0)
(19)

whereHF ≡ 〈H 〉F is the value taken by〈H 〉 for a strongly bound Frenkel exciton of mass
tensorMF . Thus, equation (17) can be conveniently rewritten as

M−1
ij = −β

∑
R

RiRjKR + (M−1
ij )F

〈H 〉
HF

with† β ≡ α/(1+α)2. Identifying the strongly bound Frenkel exciton as one whose banding
energyEF (k) can be written [8] asEF (k) = E0 + h(k), whereE0 is some constant [8],
gives from equation (19) thatHF = h(0), or finally

M−1
ij = −

∑
R

RiRj

(
βKR + H(R)

〈H 〉
HF

)
(20)

ending our derivation.

3. Conclusions and discussion

We have derived in quite considerable detail a formula for the mass tensorM of an exciton
(equation (20) above), that makes it depend on its internal quantum state, and which gives
a non-trivial tensorial interpolation between the Wannier and Frenkel limits. A previous
[5] result for non-cubic crystals is thus generalized in two different directions: firstly, by
allowing in our formalism for the possibility of different electron and hole masses, and
secondly by the inclusion of the Heller–Marcus ‘hopping’ mechanism. As pointed out in
the abstract, this last yields from equation (20) a finite mass for the Frenkel exciton, instead
of the infinite mass implied by the original [1] Mattis–Gallinar result.

It is a simple matter to show from equation (20) that, for cubic crystals, one recovers
the result [8]

M−1 = (me + mh)
−1

(
1 − K

W

)
+ M−1

F

〈H 〉
HF

(21)

for the diagonal components ofM−1; with M−1
F being the diagonal element of

(M−1
ij )F = −

∑
R

RiRjH(R) 6= 0.

† It is interesting to point out thatβ can also be written (more symmetrically) asµ/M whereµ is the reduced
mass tensor of the electron and hole (i.e.µ−1 = m−1

e + m−1
h ), while M = me + mh is the total Wannier mass

tensor.
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In equation (21),W is the average of the electron and hole band widths, with only nearest-
neighbour ‘hops’ being considered in the total internal kinetic energyK of the exciton:

K ≡
∑
R

KR > 0.

As we have shown [9], the addition of the Heller–Marcus [13] term in equation (21) may
bring about a ‘qualitatively’ [9] different behaviour for the mass of the exciton. Then, the
inequality M > me + mh (which follows from the inequalities 06 K 6 W ) does not
necessarily hold, and the total massM may be smaller [9] than the sum of the electron
and hole masses. Likewise, one may surmise that the (quantum) interference between the
kinetic energy and the Heller–Marcus term in equation (20) should bring about interesting
and model-dependent (anisotropic) properties for the mass tensorM.

The explicit calculation of these anisotropies, as well as the experimental testing of
equation (20) and of its predictions, are matters of future elucidation. However, a rough
order-of-magnitude estimate of what kind of experimental effects to expect from our
theoretical results can be obtained rather expeditiously. To this matter we now turn our
attention and discussion in the rest of this work.

If we assume that the potential that binds the electron and hole together is approximately
coulombic [4, 6] and is characterized by its usual quantum numbern = 1, 2, . . . (with
n → ∞ in the continuum limit), one can estimate then-dependent degree of anisotropy of
the various components ofM−1

ij in equation (20). One evaluates theR-dependent internal
kinetic energyKR appearing in equation (20) as an ‘overlap’ integral of the (relative-
coordinate) wavefunction of the exciton, with wavefunctions centred on lattice points that
differ by R (see the definition ofKR in equation (18)). Thus, if oneroughly assumes
a spherically symmetric exponentially localized wavefunctionF(r) ' exp(−r/a) for the
exciton, with a localization radius on the order ofa (in the coulombic wavefunctions,a
increases linearly with increasing quantum numbern, i.e.a = na0, wherea0 is an appropriate
‘Bohr’ parameter or radius) one obtains that†

KR = (1 + α)V (R)

(
1 + |R|

a
+ |R|2

3a2

)
exp

(
−|R|

a

)
(22)

for then-dependent kinetic energyKR. In this description the Wannier limit is appropriately
obtained by lettingn → ∞ for fixed a0 (or also by lettinga0 → ∞ for fixed n), while the
Frenkel limit is obtained by lettinga0 → 0.

On the other hand, for the Heller–Marcus term [13], one obtains by evaluating the
corresponding integrals in spherical coordinates that

〈H 〉
HF

= 1 −
(

1 + 2R0

a
+ 2R2

0

a2

)
exp

(
−2R0

a

)
(23)

whereR0 (the nearest-neighbour lattice distance) is taken as the radius of a sphere centred
on the origin (r = 0), within the confines of which acts the Heller–Marcus operatorH [13]
(i.e. 4

3πR3
0 ' v ≡volume of primitive cell; given thatH acts in our approximation [13] only

when the electron and hole are together in the same lattice cell). In (23), as in equation (22)
for KR, the exact Wannier and Frenkel limits of the text are obtained by lettingn → ∞
and a0 → 0, respectively. Particularly noteworthy is the limit in the Wannier-like region
(or continuum limit), for which one expects (22) and (23) to be better approximations than
in the Frenkel-like region. In particular, the experimental results of Tarrio and Schnatterly
[4] (for 4p excitons in solid Kr) were satisfactorily compared with our theory [1] in the

† The respective integral of overlap is here evaluated exactly in prolate spheroidal coordinates.
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Wannier limit, where the virial theorem is approximately valid†. Thus, by taking the limit
n → ∞ (or a0 → ∞), one obtains, to lowest non-vanishing order in|R|/a, that

(KR)n ' (1 + α)V (R)

(
1 − |R|2

6a2
0n

2

)
(24)

for the n-dependent kinetic energyKR while for the Heller–Marcus term one obtains from
equation (23) that in the limitn → ∞ (to lowest order inR0/a)

〈H 〉n
HF

' v

π(a0n)3
. (25)

The lowest non-vanishing terms that appear in (24) and (25) have characteristicallydifferent
n-dependences. Equation (24) gives a total kinetic energyKn = ∑

R KR that dies off as
1/n2, in agreement then with the virial theorem applied to the Coulomb potential. The
Heller–Marcus term of equation (25), on the other hand, roughly vanishes as the ratio of
the volume of the primitive cell with the volume of the sphere of localization‡. It must
also be noted that the way in which the kinetic energyKR behaves in (24) asn → ∞
(here because there is no linear term in|R|/a in the expansion of (22) nor for that matter
any cubic term|R|3/a3 either) is more general than suggested by our rough calculation.
This behaviour is also present inexactsolutions of one-dimensional (exciton) models, with
the Coulomb potential [14–16] defined on a lattice. It is interesting to remark that in these
one-dimensional models [9, 16] the Heller–Marcus energy also behaves differently from the
kinetic term. A 1/n dependence of the Heller–Marcus effect is found [9, 16] in the Wannier
limit, due to the appropriate normalization of the one-dimensional wavefunction.

Noting then that (22) has no 1/n3 term, and inserting now (24) and (25) into
equation (20), we can write our estimate forM−1 (up to order 1/n3), as

(M−1
ij )n ' (M−1

ij )∞ + 1(M−1
ij )n (26)

where(M−1
ij )∞ = [α/(1 + α)](m−1

h )ij is the Wannier result (i.e.M = me + mh); while the

n-dependent correction1(M−1
ij )n is given by

1(M−1
ij )n = α

1 + α

∑
R

RiRjV (R)
|R|2

6a2
0n

2
+ (M−1

ij )F
v

π(a0n)3
. (27)

In the Wannier limit for which the Bohr-like parametera0 satisfies the conditiona0 � |R|
for all relevantR-values and given some experimental [4] or theoretical knowledge [13, 17]
of the various matrix elementsC(R), V (R) and H(R), one expects equation (27) to
provide a rough estimate with which to compare experimental results of the mass tensor for
different membersn = 1, 2, 3, . . . of a given excitonic series. Heren is, as previously
indicated, the principal quantum number of thenth (excitonic) absorption peak of the
series [4]. If the ground-state (n = 1) binding energyE1 of the first peak in the series
is known [4], then the Bohr-like parametera0 can be adjusted by the approximate relation
[4] E1 ' K1 ≡ ∑

R(KR)n=1, given by the virial theorem.
The Heller–Marcus matrix elementsH(R) (being amplitudes for the simultaneous

‘hopping’ of both the electron and the hole) are, on the other hand, expected [13, 17]
on general grounds to be smaller than the electron’s (C(R)) or hole’s (V (R)) hopping
elements. Thus,(M−1

ij )F in equation (27) and the entire Heller–Marcus term associated

† These workers didnot consider, however, any Heller–Marcus effect in the interpretation of their experimental
results.
‡ Mathematically, one also has that the square of the coulombic wavefunctions ofzero angular momentumdie
off at the origin (r = 0) as 1/n3.
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with it with the 1/n3 dependence will beweaker than the corresponding kinetic term in
(27) in the Wannier limit.

The precise details of equations (22), (23) and (27) cannot, of course, be expected
to hold in general, given the rough approximations made in obtaining them. One does
expect, however, the Heller–Marcus effect (when present) to die off as predicted by (27) for
a0 → ∞, namely as the inverse volume of the sphere of localization of the exciton while,
on the other hand, the kinetic term will decrease as 1/n2 because of the virial theorem
requirements.

Future experimental works should, thus, have the last word on the applicability of the
above equations, and on their novel and interesting predictions regarding the effective mass
of an exciton.
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Tecnoĺogicas SPI scholarship 0244 is gratefully acknowledged.

References

[1] Mattis D C and Gallinar J-P 1984Phys. Rev. Lett.53 1391
[2] Jeffries C 1991Encyclopedia of Physics2nd edn ed R G Lerner and G L Trigg (New York: VCH) p 359
[3] Cafolla A A, Schnatterly S E and Tarrio C 1985Phys. Rev. Lett.55 2818
[4] Tarrio C and Schnatterly S E 1992J. Phys. Chem. Solids53 1013, and references therein
[5] Gallinar J-P 1993J. Phys.: Condens. Matter5 L223
[6] Mattis D C 1986Rev. Mod. Phys.58 361
[7] Gallinar J-P 1987Phys. Rev.B 35 6464
[8] Gallinar J-P and Mattis D C 1985Phys. Rev.B 32 4914
[9] Gallinar J-P 1987Phys. Rev.B 36 1782

[10] Altarelli M and Bassani F 1971J. Phys. C: Solid State Phys.4 L328
Andreoni W, Altarelli M and Bassani F 1975Phys. Rev.B 11 2352

[11] Baldini G 1962Phys. Rev.128 1562
Bostanjoglo O and Schmidt L 1966Phys. Lett.22 123

[12] Rashba E I 1982Excitonsed E I Rashba and M D Sturge (Amsterdam: North-Holland), and references
therein

Singh J 1994Excitation Energy Transfer Processes in Condensed Matter(New York: Plenum)
[13] Heller W and Marcus A 1951Phys. Rev.84 809
[14] Gallinar J-P 1984Phys. Lett.103A 72
[15] Kvitsinsky A A 1992 J. Phys. A: Math. Gen.25 65
[16] El-Khoury J E and Gallinar J-P 1995 unpublished
[17] Callaway J 1974Quantum Theory of the Solid State(New York: Academic)


